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Abstract. We critically examine the present theoretical understanding of the conformational 
rod-to-flexible chain crossover of a linear chain polymer in dilute solution with good 
solvent. There is good evidence for weak universality in this crossover while strong 
universality seems unlikely from available evidence. In addition, this system should exhibit 
a second crossover from Gaussian to excluded volume. We present a scaling hypothesis 
for the behaviour of this second crossover and  compare with the initial results of numerical  
simulations and  with the experiment of Murakami et al. 

1. Rod-to-flexible chain crossover and two scaling limits 

In  this paper, we review the theoretical understanding of the rod-to-flexible chain 
crossover in stiff linear polymers in dilute solution and  critically examine various 
arguments and  evidence which have been presented to support the scaling ansatz and  
the nature of the crossover. In addition, a new scaling hypothesis is presented and  
some experimental and simulation results are analysed in the light of this hypothesis. 

A convenient lattice model for studying the rod-to-flexible chain crossover is the 
persistent self-avoiding walk ( PSAW)* introduced by Halley et a1 (1985). In this model 
the ensemble of stiff chains is obtained by generating self-avoiding walks on a lattice 
with a probability p of taking a turn (gauche) and 1 - p  of going straight (trans), and 
removing the walk if it intersects itself. The only variables in this model are N, the 
number of steps, and p ,  the gauche probability. While the rod-to-flexible chain crossover 
has been studied using various other models and approaches as well (see, e.g., 
Bhattacharjee and  Muthukumar 1987 and  references therein), we concentrate on the 
PSAW stiff-chain model here as the main discussion concerns some of the results 
predicted using this model. 

The original scaling ansatz (Halley et a1 1985) for the PSAW model was written as: 

11 Permanent address:  Department o f  Physics, Purdue Unicersity, W Lafayette, IN 47907, USA. 
* This model was called the biased self-avoiding walk ( B S A W )  in previous publications of the current authors.  
Because of t he  possible confusion with a walk with a bias in fixed direction, we shall hereafter call i t  the 
persistent self-avoiding walk (PSAW 1. Correspondingly,  what used to  be called the biased random walk 
( B R W )  will henceforth be called PRW 
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where R is the end-to-end distance and v is the Flory exponent (for the definition of 
v and other critical exponents, see, e.g., de  Gennes (1979) and Yamakawa (1971)). 
This relation is intended for the asymptotic limit o f  

N + W  P'O with Np =constant. (2) 

Let us call this limit the rod-to-flexible chain limit because F ( x )  then describes the 
rod-to-flexible crossover as x grows from x<< 1 to x >> 1. 

By now many different calculations have been made to check this ansatz and obtain 
both the value of the crossover exponent A and the functional form of F ( x ) .  These 
calculations include Monte Carlo simulations (Halley et a1 1985, Lee and  Nakanishi 
1986), mapping to a lattice and  continuum spin Hamiltonians (Atkatz et a1 1987), real 
space renormalisation (Lee and  Nakanishi 1987), exact solution of directed self- 
avoiding walk models (Glasser et a1 1986, Privman and  Frisch 1988, Privman and  
Svrakic 1988), series enumeration (Privman and Redner 1987), small- Np expansion 
(Glasser er a /  1986), and  Flory approximation (Schaefer et a /  1980, Nakanishi 1987a). 
While they all support scaling of the form (1 ) with A = 1, there are some substantial 
disagreements concerning the behaviour of F ( x ) ,  which will be the subject of section 2. 

The scaling ansatz (1) anticipated F ( x )  + constant as x + 00 since this is the flexible 
(or coil-like) limit in which we expect (R ' )  to behave as N'". This must certainly be 
true if p is fixed, however small, and N is then allowed to go to infinity. However, 
the rod-to-flexible chain limit defined here is a subtle one which does not call for a 
fixed p .  In  fact a detailed Monte Carlo study (Lee and Nakanishi 1986) of this problem 
indicated that, in d = 3 dimensions, this limit produces a Gaussian stiff-chain behaviour 
with no excluded volume effect whereas in d = 2 it did yield excluded volume rod-to- 
flexible chain crossover. In  particular, F ( x )  did not show any sign of saturation but 
continued to decrease as x + %. This feature was studied carefully using a number of 
alternative forms of the scaling ansatz and for quite long and stiff chains (on the simple 
cubic lattice, the closest approach to the rod-to-flexible chain limit was for N = 1600 
and p = 0.0125). 

Such behaviour was in fact anticipated by Schaefer et a/ (1980) and by Petschek 
(private communication), and  a simple physical picture of why the dimensional 
differences can arise was given by Halley and  quoted in Lee and Nakanishi (1986). A 
real space renormalisation study (Lee and  Nakanishi 1987) later confirmed this 
behaviour by explicitly including an independent parameter controlling the strength 
of the excluded-volume effect. 

Subsequently, a Flory approximation was applied (Nakanishi 1987a; see also an 
earlier application by Schaefer er a1 1980) to the other crossover involved in this 
problem, the crossover from Gaussian to excluded volume, and suggested that this 
latter crossover is controlled by the magnitude of Npd"-"( Np' in d = 3). Thus let us 
denote by excluded-volume crossover the limit in which the self-avoiding walk 
behaviour is restored after the first crossover to Gaussian behaviour when d > 2. Then, 
the excluded-volume crossover occurs for d = 3 in the limit of 

N + m  P + O  with Np' = constant (3) 
for a suitable value of y > 1, where y = 3 according to the Flory argument. The two 
limits, rod-to-flexible chain and  excluded-volume, are such that in three dimensions, 
the rod-to-flexible chain limit implies Np' is small (therefore the chain is Gaussian) 
and  the excluded-volume limit implies Np is large (therefore the chain is coil-like). 
This situation is somewhat unconventional since both limits concern the same point 
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in the space of physical parameters (N-’, p ) = ( O , O ) .  In two dimensions, the two 
crossovers are both controlled by Np and the two scaling limits are identical. 

The scaling ansatz (1) appears to be confirmed by all available work. In addition 
to the direct Monte Carlo studies already discussed, exact solutions of directed walks 
and  series enumerations indicate that indeed various quantities, including (R’) and 
the number of walks with a given statistical weight w for gauche turns scale in this 
way with the crossover exponent equal to 1. The statistical weight w is the weight for 
a given gauche bond when the weight for trans bonds is taken as 1. Taking account 
of the fact that the relative weight per step of all gauche bonds together in this sense 
is p / ( l - p ) ,  our variable p is related to w by w =p / [4 (1  - p ) ]  on the simple cubic 
lattice, where the number of possible gauche steps per site is 4. 

For example, Glasser et a1 (1986) expand C (  w, N ) ,  the number of turn-weighted 
self-avoiding N-step walks on the square lattice, to 0 ( ( w N ) ~ ) .  This expansion extends 
the earlier derivation of the result A = 1 in Halley et a1 (1985) which showed that, as 
long as scaling of the form (1) is assumed, the value of A can be obtained from just 
the O ( p )  term in, say, ( R Z ) / N 2  (or  the O ( w )  term in C(w, N)).  Thus Glasser et a1 
(1986) reconfirmed that the value of this exponent is the same for the PSAW and PRW 

(persistent random walk with no immediate return) stiff-chain models and  further 
calculated higher-order terms that affect the functional form of the scaling function. 

2. Relationship to Gaussian scaling 

Privman and  Redner (1987) performed and analysed the series enumeration of the 
turn-weighted self-avoiding walks on the square, triangular and  simple cubic lattices. 
Using the enumeration up  to N = 22 steps on the square and N = 16 steps on the other 
two lattices, they concluded that, although scaling such as (1) holds, the suppression 
of excluded-volume effects in the stiff limit is only partial and the three-dimensional 
scaling function does not have the Gaussian character. On this basis, they argued that 
the Flory type argument (Schaefer et a1 1980, Nakanishi 1987a) is likely to be valid 
only in the limit of d + W .  

In particular, they studied the scaling of two quantities, the number of walks 
C (  w, N )  and the mean-squared end-to-end distance scaled in the way given in (1).  In 
both cases, they form finite-order approximants for the relevant quantities and plot 
them against known Gaussian results. For example, for the latter, the approximants 
used for F ( x )  in (1) are 

where x = 4wN, N is the number of steps, and  k is an  arbitrary integer. As before, U’ 
is the statistical weight for gauche turns. These approximants are evaluated for the 
several largest values of N available and for k = 1 (or  2 to avoid even-odd oscillations) 
and  no extrapolation is attempted. We note that the approximants must be calculated 
with fixed x in order that they serve as approximants for F ( x ) .  

Their results for F ( x )  on the simple cubic lattice are compared in figure 1 with the 
Gaussian results and  the Monte Carlo data from Lee and  Nakanishi (1986). The series 
results are simply taken from figure 6 of Privman and  Redner (1987) in which they 
were compared directly with the Gaussian result obtained in the rod-to-flexible chain 
limit. This means that, although their variable 4 w N  can be substantially different from 
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Figure 1. Comparison of the estimates of the scaling 
function F ( Y )  for the PSAN on  the simple cubic o , L I  r , I , , I lattice from the series enumeration work of Privman 
and  Redner (19871, Monte Carlo results of Lee a n d  
Nakanishi (1986). and  the Gaussian solution. 

0 2 i 6 
X 

x =  N p  for the range of U’ and N used in the enumeration work, we regard them to 
be the same because in the true rod-to-flexible chain limit they must be. 

Clearly, the Monte Carlo results for this scaling function are fairly close to the 
Gaussian ones in this range of x = Np, while the series approximants deviate sig- 
nificantly more. In  particular, the Monte Carlo and Gaussian results have a maximum 
in this range while the series results d o  not. We attribute this difference mainly to the 
fact that the enumeration was limited to N = 16 (thus M’ = 0.16 or p = 0.38 approxi- 
mately) and  is simply not probing the rod-to-flexible chain limit ( 2 ) .  I n  terms of the 
numerical accuracy it is important to realise that the lack of extrapolation procedures 
(to N + x, w --z 0) makes this enumeration approach much less satisfactory than other 
more standard series enumeration analyses such as the Pad i  approximant method used 
to calculate the critical indices from the high-temperature series expansions for thermal 
critical phenomena. 

However, the scaling function F ( x )  for PSAW stiff chains on the simple cubic lattice 
is definitely not identical to the corresponding Gaussian one: 

(Note that the way we defined F ( x )  is tuned to the non-Gaussian case, and thus the 
Flory exponent v appears even in the corresponding Gaussian scaling function. This 
is of no consequence to our  discussion.) Clearly, excluded volume effects change the 
values of ( R2) /  N2”p” -2 ,  for example, even in the rod-to-flexible chain limit. The 
difference as deduced from our numerical results is relatively small in the range of 
figure 1, but it becomes readily noticeable, although still bounded, for much larger 
values of Np. The Flory argument refers to the case x = Np >> 1 and  implies that the 
Gaussian and PSAW scaling functions should have the same exponent in that region 
when p + 0, N -+ 

In order to obtain strong universality (see below) between PSAW stiff chains and  
the Gaussian counterpart, we would require that the amplitude of the scaling function 
approach the same value as Np >> 1 for the two cases. The amplitude must be the same 
because the value of F ( x )  for small x is the same for the PSAW (on any lattice) and  
the Gaussian cases, and thus no rescaling to bring the large-x values into coincidence 
is permitted. Since the available evidence suggests that the amplitudes are in fact 
different, the scaling functions probably cannot be made identical for the two cases 

but not necessarily the same amplitudes. 
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by simple rescaling using metrical factors alone. This is neither inconsistent nor  does 
it affect other aspects of the scaling ansatz (such as A = 1). 

Further, it is important to note that the Flory argument concerns only the end-to-end 
distance. Thus, for example, no suggestion was made about the character of the scaling 
function for the number of walks in the rod-to-flexible chain limit. The Monte Carlo 
results (Lee and Nakanishi 1986) studied the scaling behaviour of the attrition rate in 
sampling the PSAW. From this result, the scaling character of the number of walks can 
be easily inferred, and  the behaviour is not identical to the true Gaussian case for both 
square and  simple cubic lattices. (Note that Gaussian stiff chains have no attrition.) 
Thus there is no disagreement in this regard among our studies and those of the series 
enumerations (Privman and  Redner 1987). It is, however, interesting that this problem 
seems to yield another example of the very different behaviours associated with the 
size and  number of the walks. 

3. Universality 

We distinguish weak from strong universality. By weak universality we mean the 
coincidence of exponents independent of lattice while by strong universality we mean 
the universality of scaling functions. It is well known that strong universality holds 
for stiff chains which are not self-avoiding: see for example, for continuum wormlike 
chains (Kratky and  Porod 1949, Landau and  Lifshitz 1969, Benoit and Doty 1953), 
for chains inscribed on a diamond lattice (Schroll et a1 1982) and  for a lattice PRH' 

(Lee and Nakanishi 1986). 
In  Atkatz et al (1987), Halley et al (1985), Lee and  Nakanishi (1986, 1987) and 

Nakanishi (1987a), the question of the existence of strong universality in the case of 
self-avoiding stiff chains was not addressed explicitly. For example, extensive Monte 
Carlo simulations of the PSAW stiff chains were only for the square lattice in two 
dimensions and  for the simple cubic lattice in three dimensions. So we cannot 
definitively answer the question of whether the amplitudes of the scaling functions 
F ( x )  for different lattices coincide at large x in this rod-to-flexible chain limit. (Such 
coincidence would be required for strong universality since the small-x behaviour is 
necessarily identical for all lattices as mentioned earlier.) 

This question in the self-avoiding case was investigated by Privman and  coworkers: 
by series enumeration (Privman and Redner 1987), and exact solutions of various 
directed walk models (Privman and Frisch 1987, Privman and Svrakic 1988). From 
the series enumeration work on the square and triangular lattices, they conclude that 
simple rescaling by metrical factors cannot collapse the corresponding scaling functions 
(such as F ( x ) )  for the two lattices into one and the same form over the whole range 
of 0 < x < 00, so that strong universality does not hold. While we have argued by 
comparison with Monte Carlo data that these series expansions may be too short to 
give reliable results on the scaling function, they d o  show quite large lattice dependen- 
ces. Thus it is rather hard to imagine that strong universality could hold. 

Furthermore, from the exact solutions of the directed walk models (Privman and  
Frisch 1987, Privman and  Svrakic 1988), the authors conclude that there is no strong 
universality between, say, triangular and square lattices and that the strict collapsing 
of the scaling functions for the hypercubic lattices in d dimensions occurs only in the 
d -+ cx: limit. However, the exact solutions are for a different problem than the one 
considered here. In  particular, the directed walk models reduce to a factor which 
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describes a self-avoiding one-dimensional walk and  a factor describing a Gaussian 
walk and  thus have properties somewhat like a mean-field theory. Deviations from 
strong universality are not unfamiliar in critical phenomena of systems with mean-field- 
like behaviour. For example for the cluster number scaling function in the percolation 
problem the scaling function obtained on a Bethe lattice and  that obtained from the 
molecular field solution of the so-called Potts model agree in the strong sense (i.e. up  
to metrical factors) only in the d + CO limit (Nakanishi and  Stanley 1980). 

Finally, we note that, for the partially-directed self-avoiding walk, the scaling 
functions for various quantities are very similar. For example, the scaling functions 
for the generating function take the form 

3 + 4 x  
tsa (x )  = 3( 1 - 2 x 7  

for the square lattice, and  the form 

2 + 3.x 
Z T R ( X )  = 2(1-x-4x ' )  (7) 

for the triangular lattice (Privman and Frisch 1987). Other scaling functions show 
similar differences. This is somewhat similar to other cases of weak universality (see, 
e.g., Nakanishi 1987b for the so-called AB-percolation problem). In any case it is clear 
in all cases that weak universality holds. 

4. Scaling in Gaussian-to-excluded volume crossover 

Assuming that the rod-to-flexible chain crossover can be separated from the excluded- 
volume crossover, we may ask how one can study the latter crossover by itself. We 
may start, for example, from a form suggested by the Flory approach: 

N 

P 
( R ' ) = - a ' h ( N p ,  N p ' )  

with y > 1 (where y = 3 by the Flory argument), and  a is the linear size of (isotropic) 
monomers. If the excluded-volume limit (3) can be taken, then Np + CO and thus (8) 
implies 

N 

P 
(R ' )  = - a 2 i (  Np' ) (9) 

in the excluded-volume limit. For large x, we are deep in the excluded volume region 
and  thus we expect a behaviour: ( R 2 ) a  N 2 "  (where v - 5  in three dimensions). This 
leads to the asymptotic form of 

x + x  (10) K(x) - x ? u - '  

where cy = 1 - ( 2 v -  l ) y  ( a  = f in d = 3 by Flory approximation). 
This is a concrete hypothesis that should be directly testable either using PSAW 

stiff-chain simulation data or  with the results from real experiments on the chain size. 
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Indeed, light scattering experiments (Murakami et al 1980) on polyhexyl-isocyanate 
polymers in the dilute limit d o  suggest two crossovers such as would be expected from 
the sort of scaling behaviour given by (8 )  and (9).  After Murakami er a1 (1980), we 
show their experimental data in figure 2 by plotting a quantity proportional to (R’),” 
against one that is proportional to N in a double logarithmic scale. The initial saturation 
evident in the figure corresponds to the rod-to-flexible chain crossover and the sharp 
increase near the highest moelcular weights appears to indicate the departure from 
the Gaussian flexible chain behaviour toward the excluded-volume chain behaviour. 
Although a detailed analysis of this and other experiments will not be attempted here, 
we simply note that the increase at large N appears to be consistent with (R’))l N a 
N’”-’ (with this exponent approximately equal to 4). 

An extensive numerical test of equations (8) and (9) is currently in progress but 
because of the requirement of large computing resources to probe this crossover, in 
this paper we present only the initial simulation results available. From (8),  we should 
have scaling as a function of Np in the rod-to-flexible chain limit, while scaling should 
result as a function of Np‘  in the excluded-volume limit. In figures 3 and 4, we present 
the results on  PSAW at p=O.O15 (up  to 160000 steps), p =0.05 (up  to 80000 steps), 
and  p = 0.1 (up  to 10 000 steps), first against Np, and next against Np’ (where y = 2.3 
is chosen as a candidate for the crossover exponent purely numerically). The number 
of walks used for averaging is approximately 10 000 for p = 0.015, 30 000 for p = 0.05, 
and  70 000 for p = 0.1, even for the longest walks, respectively. The simulation employs 
a standard enrichment technique and  has been carried out using a Cray-2 at the 
University of Minnesota and  ETA-IOP at Purdue for the most part. 

In figure 3, the collapsing of the simulation data from the three different values of 
p is clearly observed for Np up to about 10’. Thereafter, p = 0.1 data deviate first and  
then p = 0.05 data deviate from those of the smallest p (i.e closest to the rod-to-flexible 
chain scaling limit). The manner of departure also bears qualitative similarity to the 
experimental results shown in figure 2. The points of departure correspond roughly to 
the region where Np‘ begins to be greater than O( l ) ,  all in accordance with the scaling 
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Figure 2. The results of Murakami er a /  (19801 on poly-hexyl-isocyanate polymers. The  
abscissa is the molecular weight and  the ordinate is the z-a\erage of the squared radius 
of gyration divided by the molecular weight. 
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Figure 3. Our  PSAU stiff chain simulation results plotted against Np. The Gaussian scaling 
function is also drawn for comparison. 
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Figure 4. Our  PSAS stiff chain simulation results plotted against Np’ ’ 

law (8). We have already discussed the relationship of this scaling functi n to th 
Gaussian-chain result (also shown in figure 3 by a continuous curve). 

In figure 4, the data are plotted against N p 2  ’. Here, the data for different values 
of p deviate significantly from each other up to about Np’ = 0(10) ,  but thereafter 
there is a suggestion of data collapsing. The value y = 2.3 is a somewhat arbitrary 
choice made to obtain best data data collapsing in this large-Np’ region, and it is not 
to be considered as an accurate estimate. While it appears that 2 < y < 3, the estimation 
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of the true value will require much further investigation. However, at least qualitatively, 
the simulation data are consistent with the scaling law (8). 

5. Summary 

In summary, all available evidence indicates that there is simple scaling for the 
rod-to-flexible chain crossover of a linear chain polymer in dilute solution, and, 
moreover, the crossover exponent within the PSAW stiff-chain model is exactly 1. 

While universality for the Gaussian case appears to be valid without a doubt, there 
may be lattice dependences for the fully excluded-volume case which cannot be removed 
by metrical factors. Therefore, while weak universality holds for the PSAW, strong 
universality may not. Also, contrary to other authors' assertions, the series enumeration 
currently available does not establish that there is only partial suppression of the 
excluded-volume effect for the three-dimensional chains in the rod-to-flexible chain 
limit, while theoretical arguments suggest total suppression. 

Finally, we present a scaling hypothesis for the second, Gaussian-to-excluded 
volume crossover and look for its test in numerical and  experimental realisations. 
There is a suggestion of this crossover in an  experiment on real stiff polymers, and 
our own numerical simulation also confirms various aspects of the hypothesis. Although 
there appear to be substantial quantitative discrepancies between the behaviour of the 
experimental results and our lattice calculations for corresponding values of p ,  we 
believe that they can be ultimately resolved in terms of the anisotropic shape of the 
monomers used in the experiment of Murakami et a1 (1980). 
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